
CORBA Communication Backplane for Design
and Verification

Pascal Giard, Jean-François Boland, Jean Belzile
Laboratoire de Communication et d’Intégration de la MicroÉlectronique (LACIME),

Department of Electrical Engineering, École de technologie supérieure,
1100 Notre-Dame Ouest, Montréal, Québec, CANADA H3C 1K3

Tel.: 514-396-8800 ext. 8426, Fax: 514-396-8684
Emails: pascal.giard@lacime.etsmtl.ca, {jean-francois.boland,jean.belzile}@etsmtl.ca

Abstract—This paper presents a novel object based com-
munication strategy to interconnect design tools and system
components operating at various abstraction levels to produce
a consistent and coherent system. Interconnects are generated
from interface models. This platform can be used to prototype,
validate, simulate and/or test the complex systems interactions
before all the components are built and integrated. Results
show a 20% increase in communication overhead compared
to MathWorks Link for ModelSim while providing a generic
solution over the tightly coupled offering from MathWorks.

Index Terms—CORBA, backplane, heterogeneous, co-
simulation, verification.

I. INTRODUCTION

Integrated circuit design complexity increases at an im-
pressive rate forcing designers to introduce heterogeneous-
ness in the design flow as an attempt to tackle the pro-
ductivity gap. System-on-Chip (SoC) is a good example of
design complexity where heterogeneous intellectual prop-
erty (IP) cores are integrated together. IP cores are designed
using different modeling paradigms according to intrinsic
characteristics. As a result, specific tools and languages are
used at different stages in the design flow. Moreover, an IP
core may be described at different abstraction levels during
the design process where each abstraction level often has
its own modeling paradigm.

Verification of such heterogeneous systems implies run-
ning multiparadigm models together. This heterogeneity
makes design verification an expensive task. Experts agree
that functional verification consumes anywhere between
50% and 75% of the design resources (time and effort)[1].

A good vehicle to implement heterogeneous systems
is a virtual functional prototype, which is an executable
specification of the system that can be used to mas-
ter the algorithms with a variable degree of architectural
constraints. When it comes to verification, heterogeneous
systems require complex mechanisms to achieve intercom-
ponent communication. Traditional solutions provided by
commercial off-the-shelf (COTS) tools are twofold. The first
one is to internally support a limited subset of modeling
languages representing multiple levels of abstraction. This
method lacks flexibility and relies on the company will-
ingness to provide support for given modeling languages.

The second one, often called "ad-hoc coupling" provides a
specific - often closed - way to interface to a simulator.

In this paper, we propose an architecture where the
actors involved communicate within a Common Object Re-
quest Broker Architecture (CORBA) i.e. a common commu-
nication backplane as proposed in [2]. Section 2 discussses
related work, section 3 presents the general architecture,
section 4 shows our implementation, section 5 presents the
results and section 6 gives our conclusions.

II. RELATED WORK

Much research work have been done to try to overcome
the challenges of simulation-based verification of hetero-
geneous systems. Unfortunately, in most cases the problem
has not been entirely solved.

The authors in [3] present the necessity of multiparadigm
modeling in embedded systems design. Embedded sys-
tems, like electronic control unit (ECU), are also comprised
of heterogeneous components. According to [3], the de-
scription of the different aspects and views of the whole
system and subsystem requires corresponding modeling
paradigms. While the designs intent is different, the ne-
cessity of multiparadigms modeling results in a similar
problem: the integration of several languages and tools. As
in [3], currently available tools used in complex integrated
circuit (IC) design flow provide insufficient support and
strategies for multiparadigm modeling.

H.D. Patel et al. proposed the CARH architecture[4] which
uses an Object Request Broker (ORB) to create a validating
environment for generated SystemC models. CARH inte-
grates CORBA and uses an ORB as a generic communi-
cation medium allowing great flexibility and expandability.
However, this architecture is aimed at a different scope i.e.
it uses CORBA to observe components’ behavior. Moreover,
it is restricted to the SystemC language and requires mod-
ifications to the Open SystemC Initiative (OSCI) Simulator.

The novel distributed object communication architecture
presented in this paper uses a tool integration mechanism
based on process flows using ORBs as described in [5]. The
following section presents the proposed architecture.

III. ARCHITECTURE

This section describes key factors of our verification
methodology namely the architecture model, the communi-
cation framework and tools involved in our heterogeneous
design flow. Tools are presented in three subsections: tool
adaptors, component wrappers and client/server wrappers.

A. Architecture Model

CORBA is a distributed object architecture standard by
the Object Management Group (OMG) widely used in
a large spectrum of applications ranging from low level
military communication devices to high level free software
computer applications. Object’s interfaces are expressed
using the Interface Definition Language (IDL).

Objects can be implemented in various languages and
on various platforms. Actually, CORBA is platform and
language agnostic. Client and server wrappers are automat-
ically generated from IDL files. Current language mappers
can generate CORBA objects in many languages such as
Ada, C, C++, Java, Eiffel, Python, PL/1 and VHDL.

Moreover, CORBA has an extensible transport framework.
Thus, CORBA is not limited to one transport protocol i.e.
pluggable transport implementations can be added.

B. Communication Framework

Communication is one of the biggest challenges when
verifying heterogeneous designs. The rationale behind the
usage of a distributed object communication architecture
as a backplane is multifold. Verification with components
implemented at various levels of abstraction often implies
that multiple languages and simulators have to interact
together. Early hardware verification with both development
boards and hardware prototypes is an asset. Data analysis
that does not require any modification to the design or any
other time consuming task is nice to have. CORBA allows
us to achieve all this at the cost of interfacing the tools
involved with the architecture. A simplified overview of the
architecture is presented in figure 1.

Each simulator or tool requires an ORB which handles
intercommunication. The simulator or tool acting as the
Master has one to many CORBA clients. The other sim-
ulators or tools act as servers exposing their respective
components via the CORBA Naming Service.

Components included in the Master but not simulated in
the latter are proxy components. In fact, proxy components
are CORBA clients sending requests to CORBA servers
which in turn, talk to the real components. The Master
believes those proxy components are native components.
Proxy components are one form of tool adaptors.

C. Tool Adaptors

Almost each and every single simulator offers an external
interface one can hook up to. The tool adaptor uses that
external interface to make the link between CORBA objects
and simulated components. Its jobs may include starting,
pausing, resuming and stopping simulation as well as

Fig. 1. CORBA Communication Backplane.

providing means for the component wrappers to initialize
a component and most importantly put or get signals.

In some cases the tool adaptor is only a container or
a shared library in which the component wrapper is im-
plemented e.g. ModelSim Foreign Language Interface (FLI)
or GHDL VHDL Programmable Interface (VHPI) or even
Simulink S-Functions.

D. Component Wrappers

Going from an application domain to another sometimes
requires functional or data adaptation. In those cases, a
component wrapper acts as a transactor. Standing between
the native component and the CORBA client, the com-
ponent wrapper exists for this sole purpose. A Simulink
block, a SystemC module or a VHDL design are examples
of components.

In case where no functional or data adaptation is re-
quired, the component wrapper simply passes on signals
from the component to the client or server and vice versa.
Before reaching the client or server, signals go through both
the tool adaptor and the client or server wrapper.

E. Client or Server Wrappers

Taking care of initializing, running and destroying the
CORBA objects, the client and server wrappers also pass
on messages received from ORBs to component wrappers
and vice versa.

Moreover, the current client and server wrappers imple-
mentation permits users to configure CORBA endpoints at
runtime.

The electronic design field contains a plethora of mod-
eling languages and tools each of which excels in its
respective application domain. This design environment
encourages designers to use the right tools for the right
tasks. As communication within the design environment is
done with ORBs, once a tool is interfaced with an ORB, it
can be integrated to the architecture.

Thus, one could use SystemC models running in the
OSCI Simulator for system design, VHDL running in Mentor
Graphics ModelSim for RTL and MathWorks MATLAB and

Simulink for data generation and result validation against
a golden model.

The next section proposes implementations for this
use case. Current implementation is multiplatform. MAT-
LAB/Simulink runs under Microsoft Windows XP while the
OSCI Simulator, Mentor Graphics ModelSim and the CORBA
Naming Service run under GNU/Linux.

IV. IMPLEMENTATION

As mentioned in the previous section, the proof of con-
cept implementation reproduce a tradional verification flow
as shown in figure 2. Hence, each actor needs an ORB. We
use a free software implementation: The ACE ORB (TAO).
Components interfaces are expressed with the IDL to be
mapped to a programming language. Mapping tools such
as tao-idl autogenerate interconnects: CORBA objects a.k.a.
ORBs.

Fig. 2. Proof of concept verification environment.

ORBs either acting as a server or a client require a
wrapper, component wrappers and ultimately tool adaptors.
Most client and server wrappers and component wrapper
functions being trivial to implement, in the following sub-
sections, emphasis is put on tool adaptor implementations.

A. MathWorks MATLAB/Simulink

MATLAB/Simulink is an algorithmic level modeling lan-
guage and numerical computing environment used to sim-
ulate dynamic systems. It here acts as the Master therefore
it only has clients: support for simulation flow control is
not required. The tool adaptor is implemented using level
2 MEX-files: S-Functions. S-Functions provide a mechanism
for extending Simulink via callback methods.

Simulink is data driven and a method, mdlOutputs , is
called every time new data comes in. That is where signals
are passed on to the client wrapper and, if required, data
and functional adaptation takes place. Proxy component
outputs are updated before leaving the mdlOutputs method.

See code listing 1 for an example where simple data
adaptation is carried out using macros.

#define fix2float(v) (((real_T)(v))/(1024*1024))
#define float2fix(v) ((int32_T)(v*1024))

static void mdlOutputs(SimStruct *S, int_T tid)
{

// Retrieve C++ object from the pointers vector
InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);
real_T *y = ssGetOutputPortRealSignal(S, 0);

CommLink *c = (CommLink *) ssGetPWork(S)[0];
if (c−>orb != 0) {

try {
// Send data to FirRtl server
CORBA::Long output = 0;

bool result = c−>orb−>update(float2fix(*u[0]), // dataIn

*u[1], // setup/run

*u[2], // number of taps
output); // dataOut

// Update S−Function output
y[0] = fix2float(output);

}
catch(const CORBA::Exception& ex) {

// Handle communication error.
}

} else {
// Handle initialization error.

}
}

Listing 1. Extract from MATLAB/Simulink component wrapper and tool
adaptor.

B. Open SystemC Initiative Simulator

The OSCI Simulator supports C++ natively and offers
mechanisms to control the simulation flow. Thus, it is
straightforward to merge the component wrapper and tool
adaptor.

Simulation flow is controlled using the sc_start method.
Signals can be accessed directly. In case where data require
adaptation - e.g. conversion from double to fixed-point
arithmetic - it is carried out using standard C++ functions.

C. Mentor Graphics ModelSim

ModelSim is a hardware simulator and debugger sup-
porting Verilog, SystemVerilog, SystemC and VHDL. It has a
VHDL Foreign Language Interface (FLI) which allows getting
and setting values in VHDL objects. To a certain extent it
also provides control over simulation. C/C++ code using FLI
are compiled and used as shared libraries.

At elaboration time, drivers are created for each signals
pushed to a design and a VHDL process is created using
mti_CreateProcess . That process is first executed at time
0 allowing design initialization including the first call to
mti_ScheduleWakeup . Following executions are triggered at
times specified by previous calls to mti_ScheduleWakeup .

Since the FLI interface does not allow full simulation
flow control, interaction with CORBA objects is done using
POSIX mechanisms. The CORBA object and server wrapper
runs in a different process. POSIX semaphores and shared
memory are used for synchronization and data exchange.

D. GHDL

GHDL is a complete free software simulator for VHDL
using GCC. Unlike the OSCI Simulator, it is impossible
to control GHDL’s simulation flow. Therefore, the POSIX
semaphores and shared memory mechanisms are used to
integrate the CORBA backplane to GHDL via the VHPI
interface.

Despite its incompleteness, GHDL’s VHPI implementa-
tion allows interaction with designs via callbacks alike

ModelSim’s FLI. A function is registered against the
cbReadOnlySync[h] callback. That function is then called
each time a signal gets updated.

The first time the cbReadOnlySync[h] callback is trig-
gered, a function which initializes the design is called.
Successive calls are used to get or put values as de-
sired. Signals are read using vpi_get_str and driven using
vpi_put_value .

Although clients and servers are autogenerated, com-
munications between ORBs are of blocking type. When
a server receives a message from a client, it reads the
message, updates the component’s input signals, simulates
the required number of clock cycles, sends back output
signals and waits for another message from a client.

Similarly, a client sends a message to a server, waits
for an answer, updates its output when the message is
received and continues its operations. Messages sent by
clients include input signals for design components. Mes-
sages received by clients include output signals from design
components.

V. RESULTS

This section presents a subset of the results that we have
obtained with our architecture. Results were obtained using
two computers connected to a dedicated 1000MBit TCP/IP
network. An Intel Xeon E7525 3.6GHz with 3GB of RAM was
running MathWorks MATLAB/Simulink 7.4.0 on Microsoft
Windows XP SP2 and a dual Intel Quad Core Xeon E5405
2.0GHz with 16GB of RAM was running the Naming Service
along with all simulation slaves on Ubuntu GNU/Linux 8.04.

As table I shows, a performance comparison between our
CORBA Communication Backplane and MathWorks Link for
ModelSim product reveals a difference that does not exceed
20% when simulating a 40 taps FIR filter.

TABLE I
PERFORMANCE COMPARISON BETWEEN MATHWORKS LINK FOR MODELSIM

(L4M) AND CORBA COMMUNICATION BACKPLANE (CCB).

Si mul ati on Real Time (s)
Difference

T i me(s) L4M CC B
2,5 12,125 13,582 12,02%
5 23,493 26,865 14,35%

7,5 34,677 40,203 15,94%
10 45,995 54,761 19,06%
15 68,362 80,884 18,32%
25 113,285 135,188 19,33%
40 181,276 216,591 19,48%
55 248,892 296,968 19,32%
70 316,247 377,368 19,33%
85 384,831 459,675 19,45%

100 451,637 538,745 19,29%

Although this communication overhead is significant,
it may become negligible where communication between
design entities is minimal and design simulation requires
heavy processing. Moreover, our generic design and veri-
fication architecture enables a broader tool base to work
together resulting in seamless integration of different mod-
eling languages and abstraction levels.

With its components wrappers that can act as transactors,
this verification environment gives the designer the ability
to do targeted design component refinements. He can
express a design component in another formalism or move
it on a different networked computer and still be able to
verify the design as a whole as if design components were
all expressed at the same level of abstraction and running
in the same simulator. Besides, the designer can point
component proxies to other component implementations
by changing a string in the Simulink block properties, thus
enabling quick architecture exploration.

VI. CONCLUSION

This paper’s main contribution is a novel and generic
design and verification architecture based on a distributed
object communication architecture. Our work differs from
[4] as we use CORBA not only to observe but to interact with
them. Additionally, integration with the OSCI Simulator
does not require any modification to the upstream code
base.

Our design and verification architecture enables co-
simulation of components expressed at different abstraction
levels and in different modeling languages, running in
different simulators or platforms, along with flexible tools
integration as shown in figure 2. The ease of integration
promotes good design practices such as architecture explo-
ration, code reuse, early hardware verification and targeted
design components fine-grained refinements. Moreover,
current implementation permits simulators to be spreaded
across a TCP/IP network allowing distributed processing.

Finally, any simulator or tool can be integrated to the
architecture as long as it can be interfaced with a program-
ming language or interfaced with an ORB.

Future work includes evaluating the impact of simulation
distribution of a large design over many computers, im-
proving performance and migrating away from MATLAB as
a Master. Hardware in the loop verification using an FPGA
and the PrismTech’s OpenFusion Integrated Circuit ORB is
also considered.

ACKNOWLEDGEMENT

We acknowledge the support of the Canadian Microelec-
tronics Corporation (CMC) and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] J. Bergeron, “Writing Testbenches using SystemVerilog,” Springer, 2006.
[2] S. Schmerler, Y. Tanurhan, and K. Muller-Glaser, “A backplane ap-

proach for cosimulation in high-level system specification environ-
ments,” eurodac, vol. 00, p. 262, 1995.

[3] K. Muller-Glaser, G. Frick, E. Sax, and M. Kuhl, “Multiparadigm mod-
eling in embedded systems design,” Control Systems Technology, IEEE
Transactions on, vol. 12, no. 2, pp. 279–292, 2004.

[4] H. Patel, D. Mathaikutty, D. Berner, and S. Shukla, “CARH: service-
oriented architecture for validating system-level designs,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 25, no. 8, pp. 1458–1474, Aug. 2006.

[5] S. Neema, G. Karsai, and A. Lang, “Tool integration patterns,” Proceed-
ings of Workshop on Tool Integration in System Development, European
Software Engineering Conference, pp. 33–38, 2003.

