
Implementation of a Differential Chaos Shift
Keying Communication system in GNU Radio

Georges Kaddoum, Julien Olivain, Guillaume Beaufort Samson, Pascal Giard, François Gagnon
LaCIME Laboratory1

École de technologie supérieure
Montreal, Canada

georges.kaddoum@lacime.etsmtl.ca

Abstract—In this paper the first experimental chaos radio
system using Differential Chaos Shift Keying is realized. The
software design and implementation are proposed for the ex-
perimental Differential Chaos Shift Keying (DCSK) system on
software defined radio (SDR) to perform in a real-time wireless
transmission. The GNU Radio platform is used as a flexible
and open-source platform for our implementation. In order
to perform in real-time wireless scenarios, the proposed work
implements a synchronization unit on the receiver side. Since
our system is on a SDR, the bitrate, bandwidth and central
frequency can be modified at ease. The experimental performance
are discussed and compared to the theoretical predictions. Finally
some trends concerning implementation are discussed.

I. INTRODUCTION

Since Pecora and Carroll proved in 1990 that chaotic
systems can be synchronized [1], there has been a growing
interest in digital chaotic communications over the past several
years. Given the broadband nature of chaotic signals and their
good correlation properties, as well as the extreme ease with
which it can be generated, they have become the preferred
choice for use in spread spectrum communication systems [2].

Many communication systems based on chaos have been
proposed and evaluated in the literature. From those systems,
the DCSK one represents a robust non-coherent scheme in
which the chaotic signal at the receiver side does not have to
be known exactly. In addition, the DCSK system is one of the
most promising chaos-based communications schemes for the
robustness against channel imperfections [3].

The performance of chaos-based digital communication
systems under additive white Gaussian noise (AWGN) and
m-distributed fading channels has been thoroughly studied [4]
[5] [6].

Many implementation methods of chaotic generators have
been studied and proposed in the literature [7] [8]. Some of
those chaotic generators operate in continuous mode such as
Chua’s circuit, while others are discrete time systems [9]. For
chaotic communication systems, a robust chaotic signal source
is necessary for a real-time radio implementation.

1This work has been supported in part by Ultra Electronics TCS and the
Natural Science and Engineering Council of Canada as part of the ’High
Performance Emergency and Tactical Wireless Communication Chair’ at
École de technologie supérieure.

Implementations of digital communication systems using
chaotic signals have been proposed in the literature [10]
[11]. An experimental blind timing acquisition scheme for
a FM-DCSK communication system was studied in [12]. In
this paper, we first propose a simple and robust method to
implement a chaotic generator where the period loop length
is sufficiently long and exactly known making this generator
suitable for real-time transmissions. Second, we implement a
DCSK communication system in a SDR. The synchronization
unit is taken into account in our study, and an algorithm is
proposed then implemented to make this system operational in
real-time transmissions. We decided to publish our code in [13]
under the GPLv3 license. With this open source contribution,
we wish that our framework can spur further research in that
field.

This paper is organized as follows. Section II describes the
DCSK modulation scheme. The GNU Radio and the universal
software radio peripheral (USRP) platform are presented in
section III. Section IV describes the integration method of the
chaotic generator, the software implementation of the DCSK
system with the synchronization unit, and discusses some
technical problems. Section V presents experimental results.
Conclusions and suggestions for further works are presented
in section VI.

II. DCSK COMMUNICATION SCHEME

A block diagram of a single user DCSK communication
system is shown in Figure 1.

This system uses a chaotic carrier to spread the digital
signal over a wide frequency band. As shown in Figure 1 (c),
each bit si = −1, +1 is represented by two set of chaotic
signal samples. The first set of chaotic samples represents
the reference while the second one carries the data. If +1
is transmitted, the data-bearing sequence will be equal to
the reference sequence, and if −1 is transmitted, an inverted
version of the reference sequence will be used as the data-
bearing sequence. Let 2β be the spreading factor, defined as
the number of chaotic samples sent for each bit, where β is
an integer.

During the ith bit duration, the output of the transmitter ek
is

Chaotic

generator

β
Delay

kx

is

ke

Information bits

(a)

(b)

β
Delayβ++++kr kr

β++++kr

2 (1)
*

2 (1) 1

i

k k
k i

r r
β β

β
β

− +

+
= − +
∑

Threshold

iŝi
D

(c)

,...)1(kix ++++ (1)i k
x β+ −

,...)1(1 kii xs ++++++++
1 (1)i i k

s x β+ + −
,...iki xs

i ik
s x β−

,...ikx
ik

x β−

Fig. 1: (a) DCSK transmitter, (b) DCSK receiver, (c) Transmitted frame

ek =

{
xk for 1 < k ≤ β
sixk−β for β < k ≤ 2β.

(1)

Moreover, at the receiver side, the signal is embedded in an
additive white complex Gaussian noise (AWGN) nk with two-
side power spectral density equal to 2N0. Finally, the received
signal is modeled as:

rk = ek + nk. (2)

The received quadrature signal rk delayed by half a bit
duration and correlated with undelayed signal. It then passes
by a correlator where the reference and corresponding data
samples are correlated. Then the sign of the correlator output
is computed to estimate the transmitted bit. In a practical im-
plementation many parameters like synchronization and time
sampling correction must be taken into account to correctly
achieve demodulation. Later we will explain all the steps
leading to the implementation of the DCSK system in a real-
time radio system.

III. THE GNU RADIO AND USRP PLATFORM

GNU Radio [14] is a free and open source software project
that provides signal processing components to implement
SDRs. It can be used in conjunction with a wide range of radio
frequency hardware to quickly build actual implementations.
That software is distributed under the terms of the GPLv3
license [15].

The Universal Software Radio Peripheral (USRP), is a fam-
ily of radio hardware made by Ettus Research [16] intended
to build SDRs. The analog radio frequency (RF) parts are
grouped on interchangeable daughterboards. Ettus Research
provides a wide range of such boards.

The main advantages of this hardware platform are:
• Cost: a full SDR (emitter and receiver) can be built at a

very low cost.
• Open design: schematics, design plans, part lists, FPGA

code and embedded system code are available.
• Modular design: With the help of schematics, the modular

design allows one to modify or create a new part, for
special purposes.

• Reconfigurable: all the digital modules are built around
a FPGA. The behavior of the radio can be modified by
replacing the FPGA code.

The USRP does not make any assumption about the under-
lying modulation which will be implemented in it. The major
drawback is that all practical problems (filtering, synchroniza-
tion, ...) will have to be dealt with in software (in our case in
the GNU Radio project).

A USRP only needs few parameters to work properly: a
center frequency (which should be in the supported frequency
range of its daughterboard), a sampling rate (which will
implicitly define the usable bandwidth) and a gain. Other
parameters may be available depending on daughterboards.

For our experimentation, two USRP2 are used along with
WBX RF daughterboards, GNU Radio 3.5.0 and UHD (USRP
Hardware Driver) 3.4.0 on a Linux Fedora 16 system. The
USRP2 includes a Xilinx Spartan-3 XC3S2000 FPGA, a 14
bits 100 Mega Samples Per Second (MSPS) ADC, a 16 bits
400 MSPS DAC, and a GigaBit Ethernet port. The USRP2
can handle from 195.3125 kHz up to 25 MHz of bandwidth.
The WBX RF daughterboard can handle frequencies from 50
MHz to 2.2 GHz in emission and reception, in half duplex.

IV. TECHNICAL DESCRIPTION OF THE IMPLEMENTATION

Our primary goal is to provide a first real world working
implementation of DCSK to the research community. Our C++
implementation, called gr-chaos is made available as GNU
Radio blocks.

A. Chaos Generator

We chose to implement the chaotic generator based on a lo-
gistic map function for its simplicity and well known statistical
properties [2]. This function is defined as Xn+1 = 1 − 2X2

n

where X0 ∈ [−1; 1] is defined as the initial value (seed) of
the generator [2, p. 51-52].

Our first implementation, using 32 bits IEEE 754 floating
point values (float type of the C++ language) was not
conclusive. We made that initial arbitrary choice because it
is the most common data type in GNU Radio. With such a
data type, this generator quickly enters in undesired short loops

of few hundreds or thousands values. These loops are due to
error accumulation, and the recursive nature of the generator.
An implementation using a 32 bits fixed point representation
has the same issue.

A first work around is to use a larger internal state represen-
tation: the 64 bits double C++ type. A quick study showed
that the generator eventually enters into larger loops of few
millions of values, for some initial values. We include this
generator in our gr-chaos package.

Such looping behavior may be unacceptable, depending
on the situation. Loops of few millions of values could be
a problem since SDR can run at high sampling rates (25
MSPS in the case of the fastest USRPs). Moreover, the
unknown length of the period loop makes the stability of an
implementation on hardware very weak.

As a more reliable software solution, we propose a different
approach to chaos generation, based on filtered values taken
from uniform random number generators. This method is
described in [17, section 3.4.1.B].

The main advantage of this technique is that we can choose
a random number generator depending on its known and
proven properties, and period length.

The filter for converting a uniform random generator to the
distribution of a logistic map function is defined as the inverse
function of a cumulative probability function. The probability
density function of the logistic map is defined as [2]:

f(x) =
1

π
√
1− x2

. (3)

The cumulative distribution function is defined as:

F (x) =

∫ x

−∞
f(u)du =

sin−1(x)

π
+

1

2
. (4)

The inverse function is:

F−1(x) = sin

(
π

(
x− 1

2

))
, for 0 ≤ x ≤ 1. (5)

Since a DCSK system is not coherent, we do not need to
generate the chaotic signal on the receiver side. For this reason,
we used the /dev/urandom random generator included in
the Linux 3.1 kernel as the underlying uniform random number
generator. This random number generator produces random
bytes from the entropy collected from the host computer
activity (disks I/Os, mouse, keyboard, ...). By reading bytes by
packets of four, we have random integer values in [0; 232− 1]
that can be converted to floating point numbers in [0; 1]. Then,
by applying the F−1(x) function to these uniformly distributed
values, we have random values with the distribution of a
logistic map.

The main advantage to do so is that there is no accumulation
of error due to the floating point computations. This is due to
the fact that the error of a floating point computation is not
re-injected in the internal state of the generator.

B. DCSK Modulator

The DCSK modulator implementation is straightforward.
The processing block has 2 inputs (chaos, data bit), one output
and a parameter β. The latter represents the number of samples
of chaos which will be used as a reference signal for a symbol.
Thus, a DCSK symbol will have a size of 2β samples. The
rate ratio is as follows: for each bit samples consumed on the
data input, β samples on the chaos input will be consumed
and 2β samples will be produced on the output.

C. DCSK Demodulator and synchronization algorithm

Our implementation assumes that transmit and receive gains
have been properly adjusted according to a given setup (daugh-
ter boards, center frequency, antennas, distances, location, ...).

The demodulation of a DCSK symbol is performed from the
sign of the selected correlation function. The decision variable
at the output of the correlator for a given bit i is then:

Di = <

(
β∑
k=1

rkr
∗
k+β

)
, (6)

where <(.), and ∗ are the real value and the complex conjugate
operators, respectively.

The main challenge of the DCSK demodulator implemen-
tation is the symbol synchronization. Since the USRP clocks
are not synchronized and not controlled from the software,
there are non-negligible drifts between the transmitter and the
receiver clocks. This drift has a direct impact on the center
frequency and the sampling rate. The center frequency error
in USRPs is small enough compared to the useful bandwidth of
the DCSK signal. Moreover, as the reference and data signals
will be equally shifted in frequency, a small portion of noise
will be mixed with the useful signal, resulting in a performance
degradation.

The sampling rate error is a bigger issue: since the symbol
length 2β is defined with an integer number of samples and the
symbol rate is not synchronized with the transmitter, symbol
alignment will drift, with a speed proportional to the sampling
rate error.

Our synchronization algorithm tries to resynchronize sym-
bols by finding the best auto-correlation value amongst mul-
tiple delayed copies of the received signal. Due to the good
auto-correlation properties of the chaotic signal, any symbol
misalignment (delay) will result in a very low correlation value
between the reference and the data.

In order to control the computational complexity required
by this synchronization algorithm, we set a limiting parameter
to the number of delayed copies. As shown in Figure 2, after
base band transposition, the received signal r(t) is sampled
every kTc + Td where Tc is the sampling time and Td is the
drift time which is coming from the local USRP clock. Note
that this time Td is not constant and varies from one set of
bits to another. For a given bit i, 2β + 2N samples of the
sampled signal rk are stored in an accumulator. Then, a set of
2N correlators compute auto-correlation values between each

()c d
kT T+

Accumulator
samples(2 2)Nβ + 2 (1)

*

(0) (0)
2 (1) 1

i

k k
k i

r r
β β

β
β

− +

+ + +
= − +
∑

2 (1)
*

i

r r
β β− +

∑

.

.

.

2 (1)
*

(1) (1)
2 (1) 1

i

k k
k i

r r
β β

β
β

− +

+ + +
= − +
∑

ˆ
i

s

S
elect &

S
ign(M

ax)

()r t

2 (1)
*

(2) (2)
2 (1) 1

i

k N k N
k i

r r
β β

β
β

− +

+ + +
= − +
∑

() ()
2 (1) 1

k n k n
k i

r r β
β

+ + +
= − +
∑

.

.

.

2 () 1i n Nβ + + − 2 ()i n Nβ β+ + +

bit (i+1)bit (i)

…

Fig. 2: DCSK receiver with synchronization block

set of two delayed signal slots with β chaotic samples. The
parameter N is a function of the drift time Td (NTc > Td)
where the value is set to cover all possible delays coming
from the clock and also the communication channel. Finally a
decision circuit takes the maximum of the absolute correlation
value to select the corresponding correlation block and then
computes its sign to estimate the transmitted bit ŝi. As shown
in Figure 2, storage of chaotic samples for the next bit i+ 1
starts from (2β(i) + 1 + n − N) where n is delay index of
the bit i. Note that the index value of n is defined from the
selection of the best correlation block of the bit i.

D. Availability

Our implementation is publicly and freely available at [13]
under the terms of the GPLv3 license.

V. PERFORMANCE MEASUREMENT RESULTS

The test environment used for performance evaluation was
the two previously described USRP2 radios with WBX RF
daughterboards. The radios were set up at a central frequency
of 250 MHz, the sampling rate was 0.2 MSPS, the spreading
factor β = 100, for a bitrate of 1 kbit/s. The transmitted signal
was mixed to a 500 MHz wide Gaussian noise generator with a
variable attenuator. During our experimentation, we measured

a central frequency error of about 10 kHz. The sampling
frequency error was about 10 Hz.

Regarding the BER performance of the proposed system,
Figure 3 shows the analytical BER performance along with
the measured results of the DCSK system for β = 100.

The analytical BER performance for DCSK system com-
puted under Gaussian approximation [5] is given by :

BER =
1

2
erfc

√ Eb
4N0

(
1 +

βN0

2Eb

)−1 (7)

where erfc is the complementary error function, N0/2 is the
noise variance, Eb is the bit energy computed at the output of
chaotic modulator.

In order to show the clock drift between radios, we forced
the clocks of the two USRPs to be synchronized on an external
signal generator (perfect clocks synchronization). As shown
in Figure 3, the clock drift between the SDRs generate a
performance degradation of 3 dB compared to the performance
when the synchronization is perfect and theoretical bound
given in equation (7). Finally, our major problem with this
type of SDR was clocks drift because the USRP clocks are
not synchronized and not controlled from the software. The
proposed synchronization algorithm try to deal with this prob-

lem by reducing the interference coming from the imperfect
sampling by selecting the best correlation which reduces the
performance degradation to 3 dB.

Fig. 3: Theoretical and measured BER performance results

VI. CONCLUSION

In this paper, the implementation of a real-time DCSK
communication system using GNU Radio and USRPs is
described. As part of this system, a simple yet robust chaotic
generator implementation method has been explained and
later implemented to be able to operate in real-time trans-
missions. A symbol synchronization algorithm is designed to
deal with the clock imperfections between USRP radios. This
synchronization algorithm is implemented and tested in real-
time transmission. The enhancement of the synchronization
algorithm is under study. Finally, this work is released under
an open source license, thus allowing the research community
to review and extend this project.

REFERENCES

[1] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Phys. Rev. A, vol. 64, pp. 821–823, 1990.

[2] F. C. M. Lau and C. K. Tse, Chaos-Based Digital Communication
Systems. Springer-Verlag, 2003.

[3] M. P. Kennedy, G. Kolumbán, G. Kis, and Z. Jákó, “Performance
evaluation of FM-DCSK modulation in multipath environments,” IEEE
Trans. Circuits and Systems, vol. 47, pp. 1702–1711, 2000.

[4] G. Kaddoum, P. Chargé, and D. Roviras, “A generalized methodology
for bit-error-rate prediction in correlation-based communication schemes
using chaos,” Comm. Letters., vol. 13, no. 8, pp. 567–569, 2009.

[5] M. Sushchik, L. S. Tsimring, and A. R. Volkovskii, “Performance
analysis of correlation-based communication schemes utilizing chaos,”
IEEE Trans. Circuits and Systems, vol. 47, pp. 1684–1691, 2000.

[6] Y. Xia, C. K. Tse, and F. C. M. Lau, “Performance of differential chaos-
shift-keying digital communication systems over a multipath fading
channel with delay spread,” IEEE Trans. Circuits Syst. II, Express Briefs,
vol. 51, pp. 680–684, 2004.

[7] M. Delgado-Restituto and A. Rodriguez-Vazquez, “Mixed-signal map-
configurable integrated chaos generator for chaotic communications,”
Circuits and Systems I: Fundamental Theory and Applications, IEEE
Transactions on, vol. 48, no. 12, pp. 1462 –1474, dec. 2001.

[8] Delgado-Restituto, M., and A. Rodriguez-Vazquez, “Integrated chaos
generators,” Proceedings of the IEEE, vol. 90, no. 5, pp. 747 –767, may
2002.

[9] T. S. Parker and L. O. Chua, Practical Numerical Algorithms for chaotic
systems. Springer-Verlag, 1989.

[10] M. Delgado-Restituto, A. Rodriguez-Vazquez, and V. Porra, “Integrated
circuit blocks for a dcsk chaos radio,” in Circuits and Systems, 1998.
ISCAS ’98. Proceedings of the 1998 IEEE International Symposium on,
vol. 4, may-3 jun 1998, pp. 473 –476 vol.4.

[11] K. Krol, L. Azzinnari, E. Korpela, A. Mozsary, M. Talonen, and V. Porra,
“An experimental fm-dcsk chaos radio system,” in European Conference
on Circuit Theory and Design IEEE International conference on, 2001,
pp. 17–20.

[12] X. Li, X. Lin, and D. Guo, “The experimental blind timing acquisition
scheme for fm-dcsk communication system,” in Anti-Counterfeiting Se-
curity and Identification in Communication (ASID), 2010 International
Conference on, july 2010, pp. 120 –125.

[13] “gr-chaos project repository.” [Online]. Available:
https://github.com/jolivain/gr-chaos

[14] “GNU Radio.” [Online]. Available: http://gnuradio.org/
[15] “GNU General Public License 3.0.” [Online]. Available:

http://www.gnu.org/licenses/gpl-3.0.html
[16] “Ettus Research.” [Online]. Available: http://www.ettus.com/
[17] D. E. Knuth, Seminumerical Algorithms, 2nd ed., ser. The Art of

Computer Programming. Addison-Wesley, 1981, vol. 2.

